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Abstract

Ab initio calculations have been performed for a new family of lithium salts based on heterocyclic anions: [CF3SON4C,,]” (0 <n<4). In
total, 10 different anions and their 1:1 ion pairs with lithium ions have been studied. The lithium ion affinity globally decreases with the degree
of CN-substitution to the ring. Bidentate lithium ion coordination to the sulfonyl oxygen atom and one additional atom or to two adjacent ring
nitrogen atoms is strongly preferred when structurally possible. The extremely low lithium ion affinities of the anions together with an appreciable
stability towards oxidation make these salts possible candidates for future lithium battery electrolytes.

© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

New solutes for liquid, gel and dry polymer electrolytes
are required to find a compromise between the poorly stable,
including the formation of toxic by-products [1-3], LiPFg, but
non-corroding to Al current collectors and the highly conductive
LiTFSI, but whose stability including that of the Al salt pre-
cludes its use above 3.8 V versus Li*/Li° due to Al dissolution
[4]. In a previous study [5], we have shown that the heterocyclic
azole anions based on Hiickel type stabilization and the general
formula [N5Cs,]™ (0 <n <5) have very low affinities for Li*,
i.e. they are expected to be highly dissociated in the solvents
destined to lithium batteries, the anion—cation binding enthalpy
globally decreasing with the number of CN moieties. However,
with the exception of 1,2,3-triazole-4,5-dicarbonitrile, TADC
(n=2), such anions are difficult to synthesize. We here sug-
gest a novel family of lithium salts based on heterocyclic anions
with the general formula [CF3SON4C,,]~ (0 <n <4), depicted
in Fig. 1 with R'"=*=—N or —CC=N, for which some of the pos-
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sible configurations may be amenable to more facile synthesis
than the former azole family. The strong electron-withdrawing
character of the CF3S(=0)— moieties suggests that anions with
very low Li* affinities could be found and the inherent asym-
metry of the anions should make the lithium salts less prone to
crystallization. By ab initio calculations, the Li* ion coordina-
tion, type and strength, as well as the inherent anion stability
versus oxidation has been investigated. Based on these calcu-
lations, we aim to suggest novel candidate lithium salts, with
tailored properties for application.

2. Computational details

All 10 different anions and their corresponding 1:1 lithium
ion pairs (Fig. 2a—j) have been studied by initial geometry
optimization using Hartree—Fock (HF) methods employing the
standard 6-31G* basis set (HF/6-31G*). Subsequently, second
derivatives with respect to nuclei coordinates were calculated at
this level to validate the structures obtained as energy minima.
Additionally, a higher computational chemistry level model,
B3LYP/6-311 + G* as implemented in Gaussian03 [6-8], was
used for the anions and a selection of the most stable 1:1 ion
pairs. Both the applied methods have recently been shown to
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Fig. 1. Schematic chemical structure of the anion family; R'* = —N or—CC=N.

provide excellent agreement for the enthalpy of ion pair forma-
tion, as compared to the high-level composite G3 method [9]. In
addition, the anion stability versus oxidation has been modeled
as the ionization potential (IP) obtained via the vertical energy
difference between the anion and its neutral radical (AEy), using
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VSXC/6-311 + G(2df,p), a computational scheme presented in
more detail recently [10,11]. All calculations were made using
the program packages Spartan’02 [12] and Gaussian03 [13].

3. Results and discussion
3.1. Lithium ion affinities

In order to compute the lithium ion affinities of the different
anions, the cation—anion coordination space must be searched
properly, i.e. all possible coordination sites for the lithium ion
must be found and evaluated. In Fig. 3, the resulting electronic
energy differences are plotted for the 1:1 ion pairs schemati-
cally depicted in Fig. 2a—j. Data are to be found in Table 1.
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Fig. 2. Chemical structures of the anions (“0”—"4")

with the 1:1 ion pairs’ lithium ion sites (B—G).
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Table 1
Lithium ion coordination and electronic energy differences
Anion Site Lithium ion coordination HF/6-31G* (atom:[A]) AE HF/6-31G* [kJ mol~!] AE¢ B3LYP/6-311 + G* [kI mol™!]
0 B N2:1.9036, N3:1.9056 —546 —549
B2 N1:1.8853, N2:1.9437 —561 —553
F 0:1.8012, F:1.9843 —518
la B2 N1:1.8771, N2:1.9407 —554 —537
E Ncn:1.8531 —440
F 0:1.9798, N1:2.0070 —552 —533
G N1:1.8888, F:2.1215 —533
G2 N4:1.9112, F: 2.0290 —-513
1b B N2:1.8936, N3:1.9196 —524 —-527
B2 N1:1.8963, N2:1.9274 —-539 —531
D N3:1.9734, CcN:2.3574 —505
E Ncn:1.8349 —476
F 0:1.8813, N¢N:2.1037 —537 Decomposes
G F:1.9325 —481
2a C Ncn:2.0342, Nen:2.0343 —486
D N4:1.9060 —498
E Ncn:1.8488 —441
F 0:1.9532,N1:2.0327 —522 —-502
G N1:1.9117, F:2.0640 —500
2b D N3:1.9730, Ccn:2.3227 —494
D2 N3:1.9736, CcN:2.3223 —494
D3 N1:1.9295 —483
E Ncn:1.8334 —471
E2 Ncn:1.8549 —429
F 0:1.8930, NcnN:2.0843 —524 —-513
G NcN:1.9419, F:1.9472 —472
2¢ B N1:1.9334, N2:1.8843 —526 =512
C Ncn:2.0763, Nen:2.0043 —497
E Ncn:1.8409 —463
F 0:1.9788, N1:2.0225 -519 —-527
F2 0:1.8807, Nen:2.1011 519 Decomposes
2d B N2:1.9043, N3:1.9030 —508 —-512
D N2:1.9659 —490
E Ncn:1.8419 —456
F 0:1.8858, Ncn:2.1059 —512 —523
3a C Ncn:2.0391, Nen:2.0358 —469
C2 Nen:2.0688, Nen:2.0073 —492 —493
D N4:1.9341 —471
E Ncn:1.8408 —457
E3 Ncn:1.8560 —424
0:1.8891, Ncn:2.0871 —508 —494
3b C NcN:2.0594, Nen:2.0143 —483 —491
D N2:1.9781, Ncn:2.4198 —472
E Ncn:1.8418 —449
E3 Ncn:1.8491 —443
0:1.8948, Ncn:2.0903 —-501 —-502
4 C Ncn:2.0141, Nen:2.0583 —475 —478
C2 Nen:2.0406, Nen:2.0403 —455
E2 Ncn:1.8624 —417
F 0:1.8922, NcN:2.0937 —483 —475

Ttalics are used to note the most stable ion pair per anion and method.

The capital letters define different types of sites, most of them
self-explanatory, but F being all sites with coordination to the
sulfonyl oxygen atom and G being sites with coordination to
any of the fluorine atoms. Only these two types of sites result
in the lithium ion being out of the ring plane. The possible ion

pairs of Fig. 2 not found in Table 1 or in Fig. 3 were either found
significantly less stable or converged to another type of ion pair
during the geometry optimization. The lithium ion affinity glob-
ally decreases with increasing —CC=N substitution; from “0”
to “4”, a 14% decrease in the maximum lithium ion affinity:
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Li* + [CF,SON,C,,]" <=> Li[CF,SON,C,,]
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Fig. 3. Electronic energy differences (AEc)) at HF/6-31G* for the stable 1:1 ion
pairs.
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Fig. 4. Electronic energy differences (AE) at B3LYP/6-311 + G* for a selec-
tion of 1:1 ion pairs.

—561 to —483 kJmol~!. From Fig. 3, it is clear that a bidentate
site at two adjacent ring nitrogen atoms, and especially B2, is
preferred for “0” and “1”, while F is the globally preferred site.
The former is in excellent agreement with our previous study
on [N5C»,]™ anions [1]. Coordination to the nitrile groups, both
mono- (E) and bidentately (C), is considerably less stable, but
the latter becomes an appreciable site for “3” and “4”. Based
on this finding only selected B, C and F ion pairs, in total 20
structures, were subject to B3LYP/6-311 + G* calculations. The
resulting AE,; are found in Fig. 4 and Table 1. Only minor
changes are found in the relative stability of the different ion
pair types, for “2¢” and “4”, the most stable ion pair is changed,
and the global trend of decreasing lithium ion affinities with
n remains. Some of the F sites are inherently different as the
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Fig. 5. AE, as measure of anion stability versus oxidation.

additional coordination is either a fluorine atom (for “0”) or
different types of nitrogen atoms, which explains the relatively
large variation in energies for 2a—d. The final range of (maxi-
mum) lithium ion affinities for the anions (—478 to —553)istoa
large extent lower than for comparable anions of lithium battery
interest: PFg~ (—567 kImol~!), TFSI (—592), TADC (—541)
and BOB (—521) [9]. Thus the chemistry of the anions presented
render excellent candidates whenever high ionic dissociation is
needed.

3.2. Anion oxidative stability

Excellent dissociation into cation and anion species alone
is not sufficient for a lithium salt to qualify for battery elec-
trolyte usage. Another important aspect is the stability versus
oxidation for the anion. In Fig. 5, the stability versus oxidation,
as AEy, is shown and overall, the stability increases somewhat
with increasing n. The present anions are by this measure less
stable than, e.g. the TADC anion and also considerably less
stable than the small inorganic anions like PF¢~, BF4™, etc.
[10,11]. However, the computed data needs experimental confir-
mation and, furthermore, does not exclude the salts from tailored
medium-voltage battery usage (e.g. LiFePO4-based cathodes).

3.3. Suggested synthesis scheme

The promise of both better dissociation capability and
agreeable stability versus oxidation is tempting and urges
for attempts to synthesize the present anions. Therefore, we
here suggest synthesis using simple precursors: di-amino-
maleonitrile (DAMN) and (K) trifluoromethane sulfinate and
non-intimidating conditions (Fig. 6). DAMN is commercial
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Fig. 6. Tentative scheme for synthesis of the “2a” anion.
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as a starting material for dyes, while the trifluoromethane
sulfinate anion is made simply by extrusion of CO;, from tri-
fluoroacetate (CF3CO;,™ +S0O; < CF3S0,™ +CO»). The ring
formation reaction is in its principle similar to the action of
NO;~ on DAMN leading to TADC.

4. Conclusions

Substituted heterocyclic anion structures with —CC=N
groups that inhibit the possibility of bidentate coordination to
two ring nitrogen atoms (i.e. structural removal of the B-sites)
show very low Li* ion affinities. Further substitution renders
anions with even lower lithium ion affinities. The extremely low
lithium ion affinities of the anions, decreasing with n, together
with an appreciable stability towards oxidation, increasing with
n, make these lithium salts possible candidates as solutes in
medium voltage battery electrolytes.
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